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Abstract Quinoline alkaloids are abundant in the Ruta-
ceae, and many have exhibited cytotoxic activity. Because
structurally related antitumor alkaloids such as camptothe-
cin and fagaronine are known to function as intercalative
topoisomerase poisons, it is hypothesized that cytotoxic
Stauranthus alkaloids may also serve as intercalative
topoisomerase inhibitors. To test this hypothesis theoreti-
cally, ten Stauranthus quinoline alkaloids were examined
for potential intercalation into DNA using a molecular
docking approach. Four of the alkaloids (stauranthine,
skimmianine, 3′,6′-dihydroxy-3′,6′-dihydrostauranthine,
and trans-3′,4′-dihydroxy-3′,4′-dihydrostauranthine) were
able to intercalatively dock consistently into DNA. In order
to probe the intermolecular interactions that may be
responsible for intercalation of these quinoline alkaloids,
density functional calculations have been carried out using
both the B3LYP and M06 functionals. M06 calculations
indicated favorable π–π interactions between either skim-
mianine or stauranthine and the guanine–cytosine base pair.
Furthermore, the lowest-energy face-to-face orientation of
stauranthine with guanine is consistent with favorable
dipole–dipole orientations, favorable electrostatic interac-
tions, and favorable frontier molecular orbital interactions.
Likewise, the lowest-energy face-to-face orientation of
stauranthine with the guanine–cytosine base pair reveals
favorable electrostatic interactions as well as frontier
molecular orbital interactions. Thus, not only can quinoline
alkaloids dock intercalatively into DNA, but the docked
orientations are also electronically favorable.
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Introduction

There are numerous antineoplastic agents that function by
way intercalating into double-stranded B-DNA [1]. These
intercalating antitumor drugs are typically planar aromatic
heterocycles and function by forming a ternary cleavable
complex with DNA and various DNA polymerases such as
topoisomerases I and II [2–5]. Such compounds include the
topoisomerase I poisons camptothecin and its derivatives
[6], nitidine and fagaronine [7], as well as the topoisomer-
ase II inhibitors mitoxantrone [8], ellipticine [9], and
cryptolepine [10].

Quinoline alkaloids are abundant in the Rutaceae, and
have been suggested to serve as signature compounds for
this family [11–13]. A number of these compounds are
planar aromatic heterocycles that have shown cytotoxic
activity (for example, see [14–19]). The cytotoxic quinoline
alkaloid lunacridine has been found to inhibit topoisomer-
ase II [20], and a series of cytotoxic quinolines that inhibit
topoisomerases have been synthesized [21–23]. Similarly,
the makaluvamines [24] and pyridoacridines [25] are
marine alkaloids that exhibit both topoisomerase I and
topoisomerase II inhibition [26, 27]. In our group, using
activity-directed preparative chromatographic methods, we
have isolated a number of cytotoxic quinoline alkaloids
from Stauranthus perforatus, and identified them using
NMR techniques [28, 29]. Because of the structural
similarities to known intercalating antitumor compounds,
we hypothesize that the cytotoxic activities of quinoline
alkaloids are due to DNA intercalation and/or inhibition of
topoisomerase activity leading to apoptosis.

In order to test this hypothesis, we have carried out a
molecular docking analysis of Stauranthus quinoline
alkaloids with DNA to examine the steric requirements
and constraints of intercalation of the quinoline alkaloids
between DNA base pairs (BP). X-ray crystal structures
have been solved for various intercalators with DNA,
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including daunomycin [30], idarubicin [31], iododoxorubi-
cin [32], morpholino-doxorubicins [33], 9-amino-[
N-(2-dimethylamino)ethyl]acridine-4-carboxamide [34], ac-
tinomycin D [35], nogalamycin [36], bis-daunomycin [37],
cryptolepine [38], and ellipticine [39]. Similarly, NMR
structures of intercalated complexes of DNA have been
solved, including nogalamycin [40] and bis-daunorubicin

[41]. In addition, the crystal structures of the ternary
complex of human topoisomerase I, a 22 bp DNA duplex,
with the intercalaters topotecan [42] and camptothecin [43],
have been reported. Analogous molecular docking inves-
tigations have been reported previously for camptothecin
and camptothecin derivatives with the DNA-topoisomerase
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Fig. 1 The Stauranthus quinoline alkaloids examined in this work

Compound Binding energy (kcal mol−1)

1z3f 1al9 1k4t 1t8i 1sc7

Skimmianine −4.28 −4.34 −5.48 −5.91 −5.23
5-Hydroxy-1-methyl-2-phenyl-4-quinolone −4.50a −4.25a −5.38a −5.52a −5.36a

Stauranthine −4.74 −4.76 −5.56 −5.52 −5.25
Veprisine −4.80 Noneb −5.34 −5.50 −5.20
6′-Hydroxy-3′-ketostauranthine −4.69 Noneb −5.30 Noneb −5.24
6′-Hydroxy-3′-ketoveprisine −4.30a Noneb −5.16a Noneb −5.22a

3′,6′-Dihydroxy-3′,6′-dihydrostauranthine −4.71 −4.79 −5.56 −7.30s −5.47
3′,6′-Dihydroxy-3′,6′-dihydroveprisine −4.55a Noneb −4.90a Noneb −5.24a

3′,4′-Dihydroxy-3′,4′-dihydrostauranthine −4.80 −4.55 −6.52 −6.00 −5.31
3′,4′-Dihydroxy-3′,4′-dihydroveprisine −4.82 Noneb −5.58 Noneb Noneb

Campthothecinc −4.60 −4.86 −5.95 −5.92 −5.95
Ellipticined −4.79 −4.71 −5.66 −5.74 −5.40

Table 1 ArgusDock binding
energies of best intercalated
poses for quinoline alkaloids
with DNA

a Partial intercalation—the
molecule does not insert
completely between the base
pairs (e.g., Fig. 4)
b No intercalative binding pose
found
c Camptothecin is the
co-crystallized ligand for crystal
structure 1t8i
d Ellipticine is the
co-crystallized ligand for crystal
structure 1z3f

Fig. 2 ArgusDock lowest-energy docked orientation of stauranthine
(ball and stick model) into the ellipticine binding site (G–C duplex) of
DNA (wire figure) (from PDB: 1z3f)
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I complex [44], as well as substituted 9-arylacridines with
the DNA-topoisomerase I complex [45].

We further hypothesize that, in addition to planar π
intercalation, the π-stacked complexes are stabilized further
by favorable, complementary frontier molecular orbital
interactions [46, 47]. That is, the highest occupied
molecular orbital (HOMO) of the C–G base pair has the

correct nodal properties to overlap favorably with the
lowest unoccupied molecular orbital (LUMO) of the
intercalating quinoline alkaloids. Ab initio calculations at
the MP2/6-31G*(0.25) level have been used to model the π
stacking interactions between the known intercalators
ethidium, daunomycin, ellipticine, and 4,6′-diaminide-2-
phenylindole with adenine–thymine (AT) and cytosine–
guanine (CG) [48]. These calculations revealed stable π–π
interactions between the intercalators and the base pairs.
DFT/B3LYP methods, on the other hand, were found to fail
completely, and showed no energy minima. Ellipticine and
derivatives have been similarly investigated [49]. Both
hydrogen-bonding and π stacking interactions between
psoralens and DNA base pairs have been examined using
DFT/B3LYP as well as MP2 methods [50]. Ab initio MP2/
6-31G** calculations predicted stable π–π interactions
between either psoralen or 8-methoxypsoralen and the AT
base pair; DFT/B3LYP, however, did not show an energy
minimum. Kumar and co-workers [51] have examined the
interaction of the intercalating carcinogen benzo(a)pyrene
and its metabolites with the C–G base pair using the self-
consistent-charge, density functional tight-binding (SCC-
DFTB-D) method, augmented by an empirical London
dispersion energy term. The optimized molecular geome-
tries of the π–π complexes were in good agreement with
experimental structures, and interaction energies were
comparable with MP2 calculated energies. Similarly, π
stacking interactions of mitoxantrone with adenine–
thymine (AT) and cytosine–guanine (CG) have been
modeled using the DFTB approximate DFT method, and
mitoxantrone showed greater binding with CG [52]. Jena
and Mishra [53] have calculated the molecular properties of
camptothecin and analogs using DFT/B3LYP, and have
predicted topoisomerase I activity based on the calculated
properties. These workers have not, however, looked at
π–π interactions between camptothecin and DNA base
pairs.

In this present work, we have carried out ab initio
investigations of the electronic π–π interactions between
quinoline alkaloids and DNA base pairs using density
functional theory (DFT) at the M06/6-31G* level. Aromatic
π–π interactions have been the subject of numerous
theoretical investigations into a number of interactions
[54, 55], including benzene dimer (see [56–62] for recent
high-level computational investigations), uracil dimer [63],
naphthalene dimer [58], and nucleotide base pairs [64–66].

In order to account for electron correlations in these
models, ab initio calculations have included very large basis
sets with coupled cluster calculations with single and
double substitutions with noniterative triple excitations
[CCSD(T)] [56, 57, 60]. MP2 calculations have been
shown to overestimate the effects of electron correlation
in π–π interactions [67–70]. These high level ab initio

Fig. 3 X-ray crystal structure of human topoisomerase I (ribbon
structure)–DNA complex (wire figure) (from PDB: 1k4t) with docked
(intercalated) skimmianine (yellow ball and stick model) from
ArgusDock molecular docking analysis

Fig. 4 ArgusDock docked structure of 3′,6′-dihydroxy-3′,6′-dihydro-
veprisine (ball and stick model) into the ellipticine binding site of
DNA (wire figure, from PDB: 1z3f) showing only partial intercalation

J Mol Model (2009) 15:1417–1426 1419



T
ab

le
2

C
al
cu
la
te
d
m
ol
ec
ul
ar

el
ec
tr
on

ic
de
sc
ri
pt
or
s
fo
r
St
au

ra
nt
hu

s
qu

in
ol
in
e
al
ka
lo
id
s
an
d
D
N
A

ba
se

pa
ir
s

C
om

po
un

d
H
° B

3
L
Y
P
a

H
° M

0
6
a

E
(H

O
M
O
)

E
(L
U
M
O
)

M
V
b

S
A
c

μ
d

O
e

χ
f

ηg
α
h

lo
g
P
i

E
(h
y
d
ra
ti
o
n
)j

(k
ca
l
m
ol

−1
)

(k
ca
l
m
ol

−1
)

(e
V
)

(e
V
)

(Å
3
)

(Å
2
)

(D
)

(k
ca
l
m
ol

−1
)

S
ki
m
m
ia
ni
ne

−5
62

,6
54

.1
4

−5
62

,3
01

.6
2

−5
.6
0

−0
.9
8

25
4.
1

26
7.
53

3.
48

1.
37

9
0.
12

0.
08

60
.8
93

2.
43

−5
.8
0

5-
H
yd

ro
xy

-1
-m

et
hy

l-
2-
ph

en
yl
-4
-q
ui
no

lo
ne

−5
16

,1
15

.3
0

−5
15

,7
59

.5
7

−5
.8
8

−0
.9
1

25
8.
73

26
6.
07

7.
21

1.
35

5
0.
12

0.
09

61
.1
87

2.
59

−8
.0
7

S
ta
ur
an
th
in
e

−6
11
,2
39

.1
2

−6
10

,8
52

.0
5

−5
.5
2

−1
.1
4

27
7.
66

28
7.
57

3.
26

1.
39

7
0.
12

0.
08

62
.8
6

0.
8

−4
.2
0

V
ep
ri
si
ne

−6
36

,6
21

.8
2

−6
36

,2
10

.9
4

−5
.6
3

−1
.1
7

30
6.
54

31
7.
16

3.
13

1.
44

3
0.
12

0.
08

65
.1
85

0.
77

−2
.5
8

6′
-H

yd
ro
xy

-3
′-k

et
o-
st
au
ra
nt
hi
ne

−7
05

,6
23

.4
1

−7
05

,2
08

.2
1

−6
.3
6

−2
.2
4

29
1.
52

30
1

6.
01

1.
41

6
0.
16

0.
08

64
.0
47

1.
6

−6
.9
1

6′
-H

yd
ro
xy

-3
′-k

et
o-
ve
pr
is
in
e

−7
31

,0
07

.8
5

−7
30

,5
68

.1
1

−6
.5
2

−2
.1
9

32
1.
45

33
5.
62

5.
6

1.
47

9
0.
16

0.
08

66
.4
26

1.
57

−5
.0
6

3′
,6
′-
D
ih
yd

ro
xy

di
hy

dr
o-
st
au
ra
nt
hi
ne

−7
06

,3
58

.6
0

−7
05

,9
43

.0
7

−6
.1
5

−1
.1
6

29
5.
93

30
5.
33

3.
53

1.
42

2
0.
13

0.
09

64
.1
99

0.
77

−9
.2
1

3′
,6
′-
D
ih
yd

ro
xy

di
hy

dr
o-
ve
pr
is
in
e

−7
31

,7
43

.0
7

−7
31

,3
03

.0
1

−6
.2
8

−1
.1
2

32
5.
81

33
9.
68

3.
08

1.
48

3
0.
14

0.
09

66
.5
83

0.
74

−7
.2
3

3′
,4
′-
D
ih
yd

ro
xy

di
hy

dr
o-
st
au
ra
nt
hi
ne

−7
06

,3
80

.5
9

−7
05

,9
64

.2
7

−6
.1
3

−1
.0
8

29
4.
36

30
1.
87

3.
92

1.
41
1

0.
13

0.
09

64
.0
58

-0
.7
9

−6
.2
2

3′
,4
′-
D
ih
yd

ro
xy

di
hy

dr
o-
ve
pr
is
in
e

−7
31

,7
64

.2
1

−7
31

,3
23

.3
6

−6
.3
2

−1
.1
0

32
4.
12

33
5.
38

3.
82

1.
47

0.
14

0.
1

66
.4
33

-0
.8
2

−4
.4
3

A
de
ni
ne
-T
hy

m
in
e

−6
27

,3
84

.1
3

−6
26

,9
88

.0
6

−6
.0
9

−0
.5
4

27
8.
15

31
2.
3

2.
38

1.
51

6
0.
12

0.
1

62
.6
24

0.
18

−2
4.
34

C
yt
os
in
e-
G
ua
ni
ne

−6
37

,4
60

.5
1

−6
37

,0
68

.0
3

−5
.3
3

−0
.9
3

26
8.
88

29
8.
68

6.
43

1.
48

3
0.
11

0.
08

62
.1
44

-2
.1
2

−2
3.
65

a
E
nt
ha
lp
y
(2
98

.1
5
K
)

b
M
ol
ec
ul
ar

vo
lu
m
e

c
S
ur
fa
ce

ar
ea

d
D
ip
ol
e
m
om

en
t

e
O
va
lit
y
{O

=
S
A
/[
4π

(3
M
V
/4
π
)2
/3
]}

f
E
le
ct
ro
ne
ga
tiv

ity
[χ

=
–
(E

H
O
M
O
+
E
L
U
M
O
)/
2]

g
H
ar
dn

es
s
[η

=
–
(E

H
O
M
O
-
E
L
U
M
O
)/
2]

h
P
ol
ar
iz
ab
ili
ty

[α
=
0.
08

(M
V
)
–
0.
97

99
2η

2
+
41

.3
79

1]
i
C
al
cu
la
te
d
lo
g(
oc
ta
no

l/w
at
er

pa
rt
iti
on

co
ef
fi
ci
en
t)
us
in
g
th
e
G
ho

se
-C
ri
pp

en
m
et
ho

d
[1
16

]
j
H
yd

ra
tio

n
en
er
gy

(=
E
aq
u
eo
u
s
–
E
v
ac
u
u
m
)
w
he
re

E
aq
u
eo
u
s
is
ca
lc
ul
at
ed

us
in
g
th
e
C
ra
m
er
-T
ru
hl
ar

S
M
54

m
et
ho

d
[1
17
,
11
8]

1420 J Mol Model (2009) 15:1417–1426



methods are very computationally demanding, however,
and not suitable for molecular interactions of larger,
biologically important molecules. In an effort to circumvent
the computational costs, DFT methods have been employed.
However, the widely used B3LYP and BLYP methods fail
completely for π–π interactions [71–77]. Recently, DFT
methods have been augmented with dispersion terms [58, 59,
61, 62, 76–79] to correct for these failures. Newly developed
functionals such as MPWB1K [80], M05-2X [81], and M06-
L [82] seem to sufficiently describe non-covalent interactions
including π–π stacking [83–87].

Computational methods

Molecular docking

Molecular structures for the alkaloids were built using
SPARTAN ’08 for Windows [88], and geometries optimized
using the MMFF 94 force field [89]. DNA–alkaloid
docking studies were carried out based on the crystal
structure of DNA crystallized with ellipticine (PDB: 1z3f)
[39], the NMR structure of DNA complexed with bis-
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Table 3 Mulliken atomic charges for stauranthine, skimmianine, and
guanine-cytosine from M06/6-31G* calculations

Stauranthine Skimmianine Guanine–cytosine

Atom Charge Atom Charge Atom Charge

C1 −0.22 C1 0.52 C1 0.63

C2 0.04 C2 0.04 C2 0.76

C3 0.34 C3 0.29 C3 0.10

C4 0.26 C4 0.06 C4 0.53

C5 0.35 C5 0.20 C5 -0.39

C6 -0.21 C6 −0.23 C6 0.20

C7 0.18 C7 −0.19 C7 0.77

C8 0.59 C8 −0.22 C8 0.59

C9 −0.39 C9 0.35 C9 −0.26
C10 0.32 C10 0.26 C10 0.10

C11 −0.02 C11 0.08 C11 −0.37
C12 0.27 C12 −0.27 N1 −0.77
C13 −0.49 C13 −0.25 N2 −0.51
C14 −0.49 C14 −0.24 N3 −0.61
C15 −0.20 N1 −0.60 N4 −0.87
C16 −0.14 O1 −0.49 N5 −0.50
N1 −0.64 O2 −0.52 N6 −0.63
O1 −0.56 O3 −0.54 N7 −0.47
O2 −0.57 O4 −0.54 N8 −0.84
O3 −0.56 O1 −0.59
O4 −0.59 O2 −0.58

Fig. 6 ArgusDock lowest-energy docked intercalation orientation of
skimmianine (ball and stick model) in the ellipticine binding site of
DNA (wire figure, from PDB: 1z3f) (top) and the lowest-energy face-
to-face orientation (M06/6-31G*) of stauranthine with guanine
(bottom)
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daunorubicin (PDB: 1al9) [41], and crystal structures of
DNA-topoisomerase I with topotecan (PDB: 1k4t) [42],
camptothecin (PDB: 1t8i), and the synthetic indenoisoqui-
noline MJ-II-38 (PDB: 1sc7) [43]. The crystal structures
were downloaded from the Protein Data Bank (PDB) using
ArgusLab 4.0.1 [90]. These PDB structures provide a
selection of DNA structures with known planar aromatic
intercalators as well as crystal structures of DNA-
topoisomerase I complexes. All solvent molecules and the
co-crystallized inhibitor were removed from the structures
to provide sterically unimpeded cavities for ligand docking.
Molecular docking calculations for the quinoline alkaloids
at the intercalation sites of DNA were undertaken using the

ArgusDock docking algorithm of ArgusLab 4.0.1 [90]. A
box of 20×20×20 Å (large enough to completely encompass
the cavity/intercalation site) was centered around the interca-
lation site in order to allow each alkaloid ligand to explore
potential binding poses. Larger box sizes were examined, but
these only increased the number of non-intercalative binding
poses. Different orientations of the alkaloids were examined
and divided based on their energy values.

Ab initio molecular structures and energies

The calculations were carried out using SPARTAN ’08 for
Windows [88]. Both the popular B3LYP [91, 92] and the

Fig. 7 Electrostatic potential maps (M06/6-31G*) of stauranthine (left) and guanine–cytosine (right) showing dipole moments (dark blue arrows)

Fig. 8 The lowest unoccupied molecular orbital (LUMO) of stauranthine (left) and the highest occupied molecular orbital (HOMO) of guanine-
cytosine (right) from M06/6-31G* calculations

1422 J Mol Model (2009) 15:1417–1426



recently developed M06 [82] functionals, were used
together with the 6-31G* basis set [93] for the optimization
of all stationary points in the gas phase. Frequency
calculations were used to characterize stationary points as
minima. All enthalpies are zero-point (ZPE) and thermally
corrected. π–π interactions were carried out using Spartan
’08 for Windows at the M06/6-31G* level. Several
different orientations of the alkaloids (skimmianine and
stauranthine and the C–G base pair (or G alone in the case
of stauranthine), as indicated by the molecular docking
preferred orientations, were carried out with complete
geometry optimization.

Results and discussion

Ten quinoline alkaloids were examined for potential
intercalation into DNA (Fig. 1). Molecular docking analysis
was carried out using structures of intercalated DNA (PDB
access numbers 1z3f and 1al9) as well as topoisomerase I/
DNA complexes (PDB access numbers 1k4t, 1t8i, and
1sc7). The intercalating interactions of the quinoline
alkaloids are summarized in Table 1. Four quinoline
alkaloids, stauranthine (Fig. 2), skimmianine (Fig. 3),
3′,6′-dihydroxy-3′,6′-dihydrostauranthine, and trans-3′,4′-
dihydroxy-3′,4′-dihydrostauranthine were able to dock
intercalatively into all five DNA structures, while two,
veprisine and 6′-hydroxy-3′-ketostauranthine, docked suc-
cessfully into four and three structures, respectively. The
other quinoline alkaloids in this study presumably did not
intercalate due to steric effects of non-coplanar appended
substituents (see Fig. 4 for example). The intercalating
docking energies of the quinoline alkaloids from this study
are comparable to those for the known intercalating ligands
camptothecin and ellipticine (Table 1). While skimmianine
and stauranthine show average binding energies of around
5.1 kcal mol−1, 3′,6′-dihydroxydihydrostauranthine and
3′,4′-dihydroxydihydrostauranthine have average binding
energies nearly equal to that of camptothecin (5.6, 5.4, and
5.5 kcal mol−1, respectively).

The electronic structures and properties of the quinoline
alkaloids, as well as the AT and CG base pairs, have been
calculated using DFT, B3LYP/6-31G* and M06/6-31G*.
Molecular electronic descriptors are summarized in Table 2.
The importance of these descriptors in the development of
QSAR models has been reviewed [94–96], and utilized to
examine anticancer activities of potential intercalators [97,
98]. In this present work, the molecular descriptors of the
quinoline alkaloids that correlate best with molecular
docking intercalation are the energies of the HOMO, the
van der Waals surface areas, the ovalities, and the polar-
izabilities. That is, the best intercalating quinoline alkaloids
tend to have higher EHOMO, smaller surface areas, lower
ovalities, and lower polarizabilities. Interestingly, hydro-
phobicity, as measured by log P or Ehydration do not seem to
correlate with intercalation.

Dipole–dipole interactions [99–101], electrostatic interac-
tions [102, 103], and van der Waals interactions [104–106],
as well as frontier molecular orbital interactions [107–110],
may be responsible for energetically favorable intercalation
of planar aromatic compounds into DNA. Using the lower-
energy intercalated docked poses of skimmianine and
stauranthine as a guide, different face-to-face orientations
of skimmianine with guanine–cytosine and stauranthine with
guanine were computationally examined at the M06/6-31G*
level. Based on frontier molecular orbital theory [111], the
important interactions of intercalated ligands with the base

Fig. 9 Lowest-energy intercalation pose (ArgusDock) of skimmianine
in DNA (a) and the geometry optimized (M06/6-31G*) structures for
face-to-face interactions of skimmianine with C–G (b) and G–C (c)
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pairs are expected to be the LUMO of the quinoline alkaloid
with the HOMO of the purine base [107, 108]. The HOMO
of the C–G base pair is higher in energy than that of A–T,
and should exhibit better interaction with the intercalated
ligands. DNA intercalators generally show a preference for
CG-rich regions [112–115]. Atom numbering schemes for
stauranthine, skimmianine, and guanine–cytosine are pre-
sented in Fig. 5. Atomic charges, based on Mulliken
population analysis, are listed in Table 3.

The lowest-energy intercalation docking orientation
(pose) from the molecular docking analysis for stauranthine
corresponds to the M06/6-31G* lowest-energy orientation
of stauranthine with guanine (Fig. 6). This particular
orientation allows for favorable electrostatic interactions
between stauranthine and guanine (see Fig. 7) as well as
favorable dipole–dipole interactions (Fig. 7). In addition,
there appears to be favorable complementary frontier
molecular orbital overlap between the LUMO of stauran-
thine and the HOMO of guanine–cytosine in this orienta-
tion. Thus, for example, the LUMO lobe centered on C5 of
stauranthine overlaps with the HOMO lobe centered on
C6–N2 of guanine, the lobe on C3–C4 of stauranthine
overlaps with the lobe centered on C3 of guanine, the lobe
centered on C10 of stauranthine overlaps with the lobe
located on N3 of guanine, and the lobe on C11 of
stauranthine overlaps with the lobe on N4 of guanine (see
Fig. 8).

The lowest-energy intercalation pose (ArgusDock) of
skimmianine is consistent with two low-energy orientations
of face-to-face M06/6-31G* structures (Fig. 9). The
orientation shown in Fig. 9B is the lowest-energy (M06/
6-31G*) face-to-face orientation of skimmianine with the
cytosine–guanine base pair (4.4 kcal mol−1 lower in energy
than the orientation in Fig. 9C. In this orientation (Fig. 9B),
there are somewhat favorable dipole–dipole and electro-
static interactions between the skimmianine and the C–G
base pair (see Fig. 10). For example, there are favorable
electrostatic interactions between C1 of skimmianine and
O1 of C–G, C3 of skimmianine and N1 of C–G, C6 of
skimmianine and C3 of C–G, O2 of skimmianine and C2 of
C–G, and O4 of skimmianine and C10 of C–G, in this
orientation. Additionally, there seem to be some favorable
frontier molecular orbital interactions available in this
orientation. Thus, the lobe of the LUMO of skimmianine
located on C11 would overlap with the HOMO lobe of

Fig. 10 Electrostatic potential
maps (M06/6-31G*) of skim-
mianine (center) and the two
guanine-cytosine orientations
corresponding to Fig. 9b (left)
and Fig. 9c (right) showing
dipole moments (dark blue
arrows)

Fig. 11 Frontier molecular orbitals, HOMO of C–G (above) and
LUMO of skimmianine (below) from M06/6-31G* calculations
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guanine centered on C3, the skimmianine LUMO lobe on
C2-C6 overlaps with the guanine HOMO lobe on C2–N3,
and the lobe on C3 of skimmianine overlaps with the lobe
on N4 of guanine (see Fig. 11).

Summary and conclusions

Analysis of molecular docking of Stauranthus alkaloids
into DNA suggests that some of these compounds may act
as intercalating ligands with DNA. Skimmianine, stauran-
thine, 3′,4′-dihydroxydihydrostauranthine, and 3′,6′-dihy-
droxydihydrostauranthine, each docked intercalatively into
all five DNA crystal structures examined. Veprisine and 6′-
hydroxy-3′-ketostauranthine docked into four and three
DNA structures, respectively, while 3′,4′-dihydroxydihy-
droveprisine docked successfully into two DNA structures.
Three of the quinoline alkaloids, 5-hydroxy-1-methyl-2-
phenyl-4-quinolone, 6′-hydroxy-3′-ketoveprisine, and 3′,6′-
dihydroxydihydroveprisine, did not intercalate successfully
into any of the DNA crystal structures. Two of the
quinoline alkaloids, stauranthine and skimmianine, were
examined further in terms of π–π interactions with
guanine–cytosine using DFT(M06/6-31G*). The lowest
energy docked poses (from the ArgusDock molecular
docking analysis) of these two alkaloids are structurally
consistent with the lowest-energy face-to-face π-stacking
orientations as revealed by the DFT (M06) calculations.
The orientations of the quinoline alkaloids with guanine–
cytosine are such that there are favorable dipole–dipole,
electrostatic, and frontier molecular orbital interactions
(alkaloid LUMO with guanine HOMO) interactions, and
these may serve to stabilize the π–π interactions between
the intercalating ligand and the base pairs. We conclude,
therefore, that intercalation of quinoline alkaloids is
determined by steric interactions (as revealed in the
ArgusDock molecular docking analysis), and that a combi-
nation of π–π electronic interactions serve to orient the
intercalating ligands with respect to the base pairs of DNA.
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